1
0
mirror of https://github.com/ciromattia/kcc synced 2025-12-13 01:36:27 +00:00
Files
kcc/kindlecomicconverter/rainbow_artifacts_eraser.py
Its-my-right 0d967084a0 Revert the addition of perpendicular angles and lower attenuation_factor
It was a mistake to add the perpendicular angles in the previous commit: I had the rainbow effect removal process called 2 times when I did this, for testing purposes (One before downscale and one after downscale).

The proper way to call the process is only after the downscale. And in this case it is not necessary to remove frequencies along the perpendicular angles.

In the mean time, attenuation_factor=0.15 has proven to work well along a collection of testing images.

It should be my latest commit for this feature
2025-07-18 07:38:50 -07:00

124 lines
4.6 KiB
Python

import numpy as np
from PIL import Image
def fourier_transform_image(img):
"""
Memory-optimized version that modifies the array in place when possible.
"""
# Convert with minimal copy
img_array = np.asarray(img, dtype=np.float32)
# Use rfft2 if the image is real to save memory
# and computation time (approximately 2x faster)
fft_result = np.fft.rfft2(img_array)
return fft_result
def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.30, target_angle=135,
angle_tolerance=10, attenuation_factor=0.15):
"""
Attenuates specific frequencies in the Fourier domain (optimized version for rfft2).
Args:
fft_spectrum: Result of 2D real Fourier transform (from rfft2)
freq_threshold: Frequency threshold in cycles/pixel (default: 0.3, theoretical max: 0.5)
target_angle: Target angle in degrees (default: 135)
angle_tolerance: Angular tolerance in degrees (default: 15)
attenuation_factor: Attenuation factor (0.1 = 90% attenuation)
Returns:
np.ndarray: Modified FFT with applied attenuation (same format as input)
"""
# Get dimensions of the rfft2 result
height, width_rfft = fft_spectrum.shape
# For rfft2, the original width is (width_rfft - 1) * 2
width_original = (width_rfft - 1) * 2
# Create frequency grids for rfft2 format
freq_y = np.fft.fftfreq(height, d=1.0)
freq_x = np.fft.rfftfreq(width_original, d=1.0) # Use rfftfreq for the X dimension
# Use broadcasting to create grids without meshgrid (more efficient)
freq_y_grid = freq_y.reshape(-1, 1) # Column
freq_x_grid = freq_x.reshape(1, -1) # Row
# Calculate squared radial frequencies (avoid sqrt)
freq_radial_sq = freq_x_grid**2 + freq_y_grid**2
freq_threshold_sq = freq_threshold**2
# Frequency condition
freq_condition = freq_radial_sq >= freq_threshold_sq
# Early exit if no frequency satisfies the condition
if not np.any(freq_condition):
return fft_spectrum
# Calculate angles only where necessary
# Use atan2 directly with broadcasting
angles_rad = np.arctan2(freq_y_grid, freq_x_grid)
# Convert to degrees and normalize in a single operation
angles_deg = np.rad2deg(angles_rad) % 360
# Calculation of complementary angle
target_angle_2 = (target_angle + 180) % 360
# Create angular conditions in a vectorized way
angle_condition = np.zeros_like(angles_deg, dtype=bool)
# Process both angles simultaneously
for angle in [target_angle, target_angle_2]:
min_angle = (angle - angle_tolerance) % 360
max_angle = (angle + angle_tolerance) % 360
if min_angle > max_angle: # Interval crosses 0°
angle_condition |= (angles_deg >= min_angle) | (angles_deg <= max_angle)
else: # Normal interval
angle_condition |= (angles_deg >= min_angle) & (angles_deg <= max_angle)
# Combine conditions
combined_condition = freq_condition & angle_condition
# Apply attenuation directly (avoid creating a full mask)
if attenuation_factor == 0:
# Special case: complete suppression
fft_spectrum[combined_condition] = 0
return fft_spectrum
elif attenuation_factor == 1:
# Special case: no attenuation
return fft_spectrum
else:
# General case: partial attenuation
fft_spectrum[combined_condition] *= attenuation_factor
return fft_spectrum
def inverse_fourier_transform_image(fft_spectrum):
"""
Performs an optimized inverse Fourier transform to reconstruct a PIL image.
Args:
fft_spectrum: Fourier transform result (complex array from rfft2)
original_shape: Original image shape (height, width) for proper cropping
Returns:
PIL.Image: Reconstructed image
"""
# Perform inverse Fourier transform
img_reconstructed = np.fft.irfft2(fft_spectrum)
# Normalize values between 0 and 255
img_reconstructed = np.clip(img_reconstructed, 0, 255)
img_reconstructed = img_reconstructed.astype(np.uint8)
# Convert to PIL image
pil_image = Image.fromarray(img_reconstructed, mode='L')
return pil_image
def erase_rainbow_artifacts(img):
fft_spectrum = fourier_transform_image(img)
clean_spectrum = attenuate_diagonal_frequencies(fft_spectrum)
clean_image = inverse_fourier_transform_image(clean_spectrum)
return clean_image