1
0
mirror of https://github.com/ciromattia/kcc synced 2025-12-13 01:36:27 +00:00
Files
kcc/kindlecomicconverter/rainbow_artifacts_eraser.py
Its-my-right 63a18627d3 Also attenuate high frequencies at 45°
CFA is sometimes orientated at 135°, sometimes at 45° so until we find if there is a law depending on the screen size, e-reader model or something, the best we can do is attenuate high frequencies on those two directions
2025-07-18 07:38:50 -07:00

128 lines
4.9 KiB
Python

import numpy as np
from PIL import Image
def fourier_transform_image(img):
"""
Memory-optimized version that modifies the array in place when possible.
"""
# Convert with minimal copy
img_array = np.asarray(img, dtype=np.float32)
# Use rfft2 if the image is real to save memory
# and computation time (approximately 2x faster)
fft_result = np.fft.rfft2(img_array)
return fft_result
def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.30, target_angle=135,
angle_tolerance=10, attenuation_factor=0.15):
"""
Attenuates specific frequencies in the Fourier domain (optimized version for rfft2).
Args:
fft_spectrum: Result of 2D real Fourier transform (from rfft2)
freq_threshold: Frequency threshold in cycles/pixel (default: 0.3, theoretical max: 0.5)
target_angle: Target angle in degrees (default: 135)
angle_tolerance: Angular tolerance in degrees (default: 15)
attenuation_factor: Attenuation factor (0.1 = 90% attenuation)
Returns:
np.ndarray: Modified FFT with applied attenuation (same format as input)
"""
# Get dimensions of the rfft2 result
height, width_rfft = fft_spectrum.shape
# For rfft2, the original width is (width_rfft - 1) * 2
width_original = (width_rfft - 1) * 2
# Create frequency grids for rfft2 format
freq_y = np.fft.fftfreq(height, d=1.0)
freq_x = np.fft.rfftfreq(width_original, d=1.0) # Use rfftfreq for the X dimension
# Use broadcasting to create grids without meshgrid (more efficient)
freq_y_grid = freq_y.reshape(-1, 1) # Column
freq_x_grid = freq_x.reshape(1, -1) # Row
# Calculate squared radial frequencies (avoid sqrt)
freq_radial_sq = freq_x_grid**2 + freq_y_grid**2
freq_threshold_sq = freq_threshold**2
# Frequency condition
freq_condition = freq_radial_sq >= freq_threshold_sq
# Early exit if no frequency satisfies the condition
if not np.any(freq_condition):
return fft_spectrum
# Calculate angles only where necessary
# Use atan2 directly with broadcasting
angles_rad = np.arctan2(freq_y_grid, freq_x_grid)
# Convert to degrees and normalize in a single operation
angles_deg = np.rad2deg(angles_rad) % 360
# Calculation of complementary angle
target_angle_2 = (target_angle + 180) % 360
# Calulation of perpendicular angles (CFA is sometimes orientated at 135°, sometimes at 45°)
target_angle_3 = (target_angle + 90) % 360
target_angle_4 = (target_angle_3 + 180) % 360
# Create angular conditions in a vectorized way
angle_condition = np.zeros_like(angles_deg, dtype=bool)
# Process both angles simultaneously
for angle in [target_angle, target_angle_2, target_angle_3, target_angle_4]:
min_angle = (angle - angle_tolerance) % 360
max_angle = (angle + angle_tolerance) % 360
if min_angle > max_angle: # Interval crosses 0°
angle_condition |= (angles_deg >= min_angle) | (angles_deg <= max_angle)
else: # Normal interval
angle_condition |= (angles_deg >= min_angle) & (angles_deg <= max_angle)
# Combine conditions
combined_condition = freq_condition & angle_condition
# Apply attenuation directly (avoid creating a full mask)
if attenuation_factor == 0:
# Special case: complete suppression
fft_spectrum[combined_condition] = 0
return fft_spectrum
elif attenuation_factor == 1:
# Special case: no attenuation
return fft_spectrum
else:
# General case: partial attenuation
fft_spectrum[combined_condition] *= attenuation_factor
return fft_spectrum
def inverse_fourier_transform_image(fft_spectrum):
"""
Performs an optimized inverse Fourier transform to reconstruct a PIL image.
Args:
fft_spectrum: Fourier transform result (complex array from rfft2)
original_shape: Original image shape (height, width) for proper cropping
Returns:
PIL.Image: Reconstructed image
"""
# Perform inverse Fourier transform
img_reconstructed = np.fft.irfft2(fft_spectrum)
# Normalize values between 0 and 255
img_reconstructed = np.clip(img_reconstructed, 0, 255)
img_reconstructed = img_reconstructed.astype(np.uint8)
# Convert to PIL image
pil_image = Image.fromarray(img_reconstructed, mode='L')
return pil_image
def erase_rainbow_artifacts(img):
fft_spectrum = fourier_transform_image(img)
clean_spectrum = attenuate_diagonal_frequencies(fft_spectrum)
clean_image = inverse_fourier_transform_image(clean_spectrum)
return clean_image