mirror of
https://github.com/ciromattia/kcc
synced 2025-12-13 01:36:27 +00:00
Add rainbow_artifacts_eraser helper
This helper file contains the methods necessary to perform a fourier transform on the picture, to remove frequencies responsible for rainbow artifacts on Kaleido screens, and performe the reverse fourier transform
This commit is contained in:
131
kindlecomicconverter/rainbow_artifacts_eraser.py
Normal file
131
kindlecomicconverter/rainbow_artifacts_eraser.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
def fourier_transform_image(img):
|
||||
"""
|
||||
Performs a 2D Fourier transform on a PIL image.
|
||||
|
||||
Args:
|
||||
img: PIL Image (can be color or grayscale)
|
||||
|
||||
Returns:
|
||||
fft_result: Complex result of the 2D FFT
|
||||
"""
|
||||
# Convert PIL image to NumPy array
|
||||
img_array = np.array(img)
|
||||
|
||||
# Perform 2D Fourier transform
|
||||
fft_result = np.fft.fft2(img_array)
|
||||
|
||||
return fft_result
|
||||
|
||||
def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.3, target_angle=135,
|
||||
angle_tolerance=15, attenuation_factor=0.1):
|
||||
"""
|
||||
Attenuates specific frequencies in the Fourier domain (optimized version).
|
||||
|
||||
Args:
|
||||
fft_spectrum: Result of 2D Fourier transform (non-centered)
|
||||
freq_threshold: Frequency threshold in cycles/pixel (default: 0.3, theoretical max: 0.5)
|
||||
target_angle: Target angle in degrees (default: 135)
|
||||
angle_tolerance: Angular tolerance in degrees (default: 15)
|
||||
attenuation_factor: Attenuation factor (0.1 = 90% attenuation)
|
||||
|
||||
Returns:
|
||||
np.ndarray: Modified FFT with applied attenuation (same format as input)
|
||||
"""
|
||||
|
||||
# Get dimensions
|
||||
height, width = fft_spectrum.shape
|
||||
|
||||
# Create frequency grids in an optimized way
|
||||
freq_y = np.fft.fftfreq(height, d=1.0)
|
||||
freq_x = np.fft.fftfreq(width, d=1.0)
|
||||
|
||||
# Use broadcasting to create grids without meshgrid (more efficient)
|
||||
freq_y_grid = freq_y.reshape(-1, 1) # Column
|
||||
freq_x_grid = freq_x.reshape(1, -1) # Row
|
||||
|
||||
# Calculate squared radial frequencies (avoid sqrt)
|
||||
freq_radial_sq = freq_x_grid**2 + freq_y_grid**2
|
||||
freq_threshold_sq = freq_threshold**2
|
||||
|
||||
# Frequency condition
|
||||
freq_condition = freq_radial_sq >= freq_threshold_sq
|
||||
|
||||
# Early exit if no frequency satisfies the condition
|
||||
if not np.any(freq_condition):
|
||||
return fft_spectrum
|
||||
|
||||
# Calculate angles only where necessary
|
||||
# Use atan2 directly with broadcasting
|
||||
angles_rad = np.arctan2(freq_y_grid, freq_x_grid)
|
||||
|
||||
# Convert to degrees and normalize in a single operation
|
||||
angles_deg = np.rad2deg(angles_rad) % 360
|
||||
|
||||
# Optimize angular condition
|
||||
# Calculate both target angles at once
|
||||
target_angle_2 = (target_angle + 180) % 360
|
||||
|
||||
# Create angular conditions in a vectorized way
|
||||
angle_condition = np.zeros_like(angles_deg, dtype=bool)
|
||||
|
||||
# Process both angles simultaneously
|
||||
for angle in [target_angle, target_angle_2]:
|
||||
min_angle = (angle - angle_tolerance) % 360
|
||||
max_angle = (angle + angle_tolerance) % 360
|
||||
|
||||
if min_angle > max_angle: # Interval crosses 0°
|
||||
angle_condition |= (angles_deg >= min_angle) | (angles_deg <= max_angle)
|
||||
else: # Normal interval
|
||||
angle_condition |= (angles_deg >= min_angle) & (angles_deg <= max_angle)
|
||||
|
||||
# Combine conditions
|
||||
combined_condition = freq_condition & angle_condition
|
||||
|
||||
# Apply attenuation directly (avoid creating a full mask)
|
||||
if attenuation_factor == 0:
|
||||
# Special case: complete suppression
|
||||
fft_spectrum[combined_condition] = 0
|
||||
return fft_spectrum
|
||||
elif attenuation_factor == 1:
|
||||
# Special case: no attenuation
|
||||
return fft_spectrum
|
||||
else:
|
||||
# General case: partial attenuation
|
||||
fft_spectrum[combined_condition] *= attenuation_factor
|
||||
return fft_spectrum
|
||||
|
||||
def inverse_fourier_transform_image(fft_spectrum):
|
||||
"""
|
||||
Performs an inverse Fourier transform to reconstruct a PIL image.
|
||||
|
||||
Args:
|
||||
fft_spectrum: Fourier transform result (complex array)
|
||||
|
||||
Returns:
|
||||
PIL.Image: Reconstructed image
|
||||
"""
|
||||
# Perform inverse Fourier transform
|
||||
img_reconstructed = np.fft.ifft2(fft_spectrum)
|
||||
|
||||
# Take real part (eliminate imaginary artifacts due to numerical errors)
|
||||
img_reconstructed = np.real(img_reconstructed)
|
||||
|
||||
# Normalize values between 0 and 255
|
||||
img_reconstructed = np.clip(img_reconstructed, 0, 255)
|
||||
img_reconstructed = img_reconstructed.astype(np.uint8)
|
||||
|
||||
# Convert to PIL image
|
||||
pil_image = Image.fromarray(img_reconstructed, mode='L')
|
||||
|
||||
return pil_image
|
||||
|
||||
import numpy as np
|
||||
|
||||
def erase_rainbow_artifacts(img):
|
||||
fft_spectrum = fourier_transform_image(img)
|
||||
clean_spectrum = attenuate_diagonal_frequencies(fft_spectrum)
|
||||
clean_image = inverse_fourier_transform_image(clean_spectrum)
|
||||
return clean_image
|
||||
Reference in New Issue
Block a user