mirror of
https://github.com/ciromattia/kcc
synced 2025-12-13 01:36:27 +00:00
High performance improvements by using rfft2 instead of fft2
This commit is contained in:
@@ -1,31 +1,26 @@
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def fourier_transform_image(img):
|
||||
"""
|
||||
Performs a 2D Fourier transform on a PIL image.
|
||||
|
||||
Args:
|
||||
img: PIL Image (can be color or grayscale)
|
||||
|
||||
Returns:
|
||||
fft_result: Complex result of the 2D FFT
|
||||
Memory-optimized version that modifies the array in place when possible.
|
||||
"""
|
||||
# Convert PIL image to NumPy array
|
||||
img_array = np.array(img)
|
||||
# Convert with minimal copy
|
||||
img_array = np.asarray(img, dtype=np.float32)
|
||||
|
||||
# Perform 2D Fourier transform
|
||||
fft_result = np.fft.fft2(img_array)
|
||||
# Use rfft2 if the image is real to save memory
|
||||
# and computation time (approximately 2x faster)
|
||||
fft_result = np.fft.rfft2(img_array)
|
||||
|
||||
return fft_result
|
||||
|
||||
|
||||
def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.3, target_angle=135,
|
||||
angle_tolerance=15, attenuation_factor=0.1):
|
||||
angle_tolerance=15, attenuation_factor=0.1):
|
||||
"""
|
||||
Attenuates specific frequencies in the Fourier domain (optimized version).
|
||||
Attenuates specific frequencies in the Fourier domain (optimized version for rfft2).
|
||||
|
||||
Args:
|
||||
fft_spectrum: Result of 2D Fourier transform (non-centered)
|
||||
fft_spectrum: Result of 2D real Fourier transform (from rfft2)
|
||||
freq_threshold: Frequency threshold in cycles/pixel (default: 0.3, theoretical max: 0.5)
|
||||
target_angle: Target angle in degrees (default: 135)
|
||||
angle_tolerance: Angular tolerance in degrees (default: 15)
|
||||
@@ -35,12 +30,14 @@ def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.3, target_angl
|
||||
np.ndarray: Modified FFT with applied attenuation (same format as input)
|
||||
"""
|
||||
|
||||
# Get dimensions
|
||||
height, width = fft_spectrum.shape
|
||||
# Get dimensions of the rfft2 result
|
||||
height, width_rfft = fft_spectrum.shape
|
||||
# For rfft2, the original width is (width_rfft - 1) * 2
|
||||
width_original = (width_rfft - 1) * 2
|
||||
|
||||
# Create frequency grids in an optimized way
|
||||
# Create frequency grids for rfft2 format
|
||||
freq_y = np.fft.fftfreq(height, d=1.0)
|
||||
freq_x = np.fft.fftfreq(width, d=1.0)
|
||||
freq_x = np.fft.rfftfreq(width_original, d=1.0) # Use rfftfreq for the X dimension
|
||||
|
||||
# Use broadcasting to create grids without meshgrid (more efficient)
|
||||
freq_y_grid = freq_y.reshape(-1, 1) # Column
|
||||
@@ -65,7 +62,8 @@ def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.3, target_angl
|
||||
angles_deg = np.rad2deg(angles_rad) % 360
|
||||
|
||||
# Optimize angular condition
|
||||
# Calculate both target angles at once
|
||||
# For rfft2, we only process angles in the positive half-plane of X
|
||||
# So we only calculate the main angle, not its opposite
|
||||
target_angle_2 = (target_angle + 180) % 360
|
||||
|
||||
# Create angular conditions in a vectorized way
|
||||
@@ -96,22 +94,20 @@ def attenuate_diagonal_frequencies(fft_spectrum, freq_threshold=0.3, target_angl
|
||||
# General case: partial attenuation
|
||||
fft_spectrum[combined_condition] *= attenuation_factor
|
||||
return fft_spectrum
|
||||
|
||||
|
||||
def inverse_fourier_transform_image(fft_spectrum):
|
||||
"""
|
||||
Performs an inverse Fourier transform to reconstruct a PIL image.
|
||||
Performs an optimized inverse Fourier transform to reconstruct a PIL image.
|
||||
|
||||
Args:
|
||||
fft_spectrum: Fourier transform result (complex array)
|
||||
fft_spectrum: Fourier transform result (complex array from rfft2)
|
||||
original_shape: Original image shape (height, width) for proper cropping
|
||||
|
||||
Returns:
|
||||
PIL.Image: Reconstructed image
|
||||
"""
|
||||
# Perform inverse Fourier transform
|
||||
img_reconstructed = np.fft.ifft2(fft_spectrum)
|
||||
|
||||
# Take real part (eliminate imaginary artifacts due to numerical errors)
|
||||
img_reconstructed = np.real(img_reconstructed)
|
||||
"""
|
||||
# Perform inverse Fourier transform
|
||||
img_reconstructed = np.fft.irfft2(fft_spectrum)
|
||||
|
||||
# Normalize values between 0 and 255
|
||||
img_reconstructed = np.clip(img_reconstructed, 0, 255)
|
||||
@@ -122,10 +118,8 @@ def inverse_fourier_transform_image(fft_spectrum):
|
||||
|
||||
return pil_image
|
||||
|
||||
import numpy as np
|
||||
|
||||
def erase_rainbow_artifacts(img):
|
||||
fft_spectrum = fourier_transform_image(img)
|
||||
clean_spectrum = attenuate_diagonal_frequencies(fft_spectrum)
|
||||
clean_spectrum = attenuate_diagonal_frequencies(fft_spectrum)
|
||||
clean_image = inverse_fourier_transform_image(clean_spectrum)
|
||||
return clean_image
|
||||
return clean_image
|
||||
|
||||
Reference in New Issue
Block a user